Holothuroidea

SynaptulaHolothuria (Halodeima) atraCucumaria taxon links

Not Monophyletic Phylogenetic position of group is uncertain Phylogenetic position of group is uncertain<area title=”Echinodermata” coords=”5,40,14,49″ href=”http://www.tolweb.org/Echinodermata/2497&#8243; alt=”[down

Interpreting the tree

close boxThis tree diagram shows the relationships between several groups of organisms.

The root of the current tree connects the organisms featured in this tree to their containing group and the rest of the Tree of Life. The basal branching point in the tree represents the ancestor of the other groups in the tree. This ancestor diversified over time into several descendent subgroups, which are represented as internal nodes and terminal taxa to the right.

example of a tree diagramYou can click on the root to travel down the Tree of Life all the way to the root of all Life, and you can click on the names of descendent subgroups to travel up the Tree of Life all the way to individual species.

For more information on ToL tree formatting, please see Interpreting the Tree or Classification. To learn more about phylogenetic trees, please visit our Phylogenetic Biology pages.

close box

Tree modified from Kerr (2000).

Containing group: Echinodermata

Introduction

The Holothuroidea, or sea cucumbers, are an abundant and diverse group of worm-like and usually soft-bodied echinoderms. They are found in nearly every marine environment, but are most diverse on tropical shallow-water coral reefs. They range from the intertidal, where they may be exposed briefly at low tide, to the floor of the deepest oceanic trenches. The oldest undoubted fossils of sea cucumbers are of isolated spicules from the Silurian (ca. 400 million years ago; Gilliland, 1993). Considerable diversification has occurred since then with about 1400 living species in a variety of forms. Some of these are about 20 cm in length, though adults of some diminutive species may not exceed a centimeter, while one large species can reach lengths of 5 m (Synapta maculata). Several species can swim and there are even forms that live their entire lives as plankton, floating with the ocean currents.

Economically, sea cucumbers are important in two main ways. First, some species produce toxins that are of interest to pharmaceutical firms seeking to learn their medical value. Some compounds isolated to date exhibit antimicrobial activity or act as anti-inflammatory agents and anticoagulants. Second, as a gourmet food item in the orient, they form the basis of a multimillion-dollar industry that processes the body wall for sale as beche-de-mer or trepang. However, the high value of some species, the ease with which such shallow-water forms can be collected and their top-heavy age structures all contribute to over-exploitation and collapse of the fisheries in some regions. Fishermen in the Pacific islands use the toxins, some of which act as respiratory inhibitors, to entice fish and octopus from crevices so that they may be more easily speared. Furthermore, the sticky Cuvierian tubules (see description below) are placed over bleeding wounds as a bandage.

Characteristics

The most important feature distinguishing the sea cucumbers is a calcareous ring that encircles the pharynx or throat. This ring serves as an attachment point for muscles operating the oral tentacles and for the anterior ends of other muscles that contract the body longitudinally. Sea cucumbers are also distinct as echinoderms in having a circlet of oral tentacles. These may be simple, digitate (with finger-like projections), pinnate (feather-like), or peltate (flattened and shield-like). A third key feature, found in 90% of living species, is the reduction of the skeleton to microscopic ossicles (Figure 1). In some species, the ossicles may be enlarged and plate-like.

Click on an image to view larger version & data in a new window

Click on an image to view larger version & data in a new window

Calcareous skeletal ossiclesFigure 1. Calcareous skeletal ossicles from the body wall (in situ) of two recent holothurians.
Left: Wheels and hook-shaped rods of Trochodota allani (Apodida: Chiridotidae).
Right: Spinose wheels with perforated hub and simple rods of Siniotrochus phoxus (Apodida: Myriotrochidae).
Photographs copyright © 2000 Mike Reich.

As in other echinoderms, the holothurian water vascular system consists of an anterior ring canal from which arise long canals running posteriorly (not shown in Figure 2). Despite their similarity to the radial canals of other echinoderms, these latter structures arise embryologically in a quite different manner. For this reason these canals in holothurians have been recently renamed longitudinal canals (Mooi and David 1997). In holothurians, the larval structures that would form the radial canals in other echinoderms instead become the five primary tentacles. Also, holothurians with the exception of members in Elasipodida have a madrepore that opens into the coelom (body cavity). In contrast, elasipodans and nearly all other echinoderms have a madrepore that opens externally.

Click on an image to view larger version & data in a new window

Click on an image to view larger version & data in a new window

 Figure 2: Main internal anatomical features of a cucumariid sea cucumber (Dendrochirotida).
Drawing by Ivy Livingstone. Copyright © 1995 BIODIDAC.

Some sea cucumbers possess organs not found in other invertebrates. In some Aspidochirotida, the respiratory trees display Cuvierian tubules. In most species, these are apparently defensive structures. They can be expelled through the anus, whereupon they dramatically expand in length and become sticky, entangling or deterring would-be predators, such as crabs and gastropods. Many forms, with the exception of members of Elasipodida and Apodida, possess respiratory trees used in gas exchange. These are paired, heavily branched tubes attached to the intestine near the anus. This type of breathing (“cloacal breathing”) is also present in an unrelated group, the echiuran worms.

Hyman (1955) provides a useful account of holothuroid gross anatomy, Smiley (1994) covers microscopic aspects, while Smiley et al. (1991) reviews reproduction and larval development.

The Orders of Holothuroidea

The ancestors of the Apodida, Elasipodida and the lineage leading to the remaining orders diverged in the middle to late Paleozoic Era between about 350 to 250 million years ago. The Aspidochirotida, Molpadiida, Dendrochirotida and Dactylochirotida began diverging somewhat later in the Triassic and Jurassic of the early Mesozoic Era about 200 million years ago. Assignment to different orders is largely based on the form of the calcareous ring and tentacles, as well as the presence of certain organs, such as the respiratory trees or the muscles that retract the oral region.

Descriptions of each order given below are modified from Pawson (1982) and Smiley (1994):

Apodida
Contains about 269 species in 32 genera and three families. Tentacles are digitate, pinnate or, in some small species, simple. Respiratory trees are absent. Tube feet are completely absent. The calcareous ring is without posterior projections. The body wall is very thin and often transparent. Found in both shallow and deep water.
Elasipodida
Contains about 141 species in 24 genera and five families. Tentacles are shield-shaped and used in shovelling sediment. Respiratory trees are present. The calcareous ring is without posterior projections. With the exception of Deimatidae, the body wall is soft to gelatinous. All forms live in deep water.
Aspidochirotida
There are about 340 species in 35 genera and three families. Tentacles are shield-shaped. Respiratory trees are present. The calcareous ring is without posterior projections. The body wall is generally soft and pliant. Most forms live in shallow water, though one family is restricted to the deep sea.
Molpadiida
There are about 95 species in 11 genera and four families. Tentacles are simple. Respiratory trees are present. The calcareous ring is without posterior projections. The body wall is generally soft and pliant. Most forms live in shallow water, though one family is restricted to the deep sea.
Dendrochirotida
Contains about 550 species in 90 genera and seven families. Tentacles are highly branched and extended to filter material from the water column. Respiratory trees are present. Some members with a calcareous ring composed of numerous small pieces or having long posterior extensions. Possess muscles for retracting the oral introvert. The body wall may be hardened from enlarged plate-like ossicles. Live either attached to hard bottoms or burrow in soft sediment. Most species live in shallow water.
Dactylochirotida
Contains about 35 species in seven genera and three families. Tentacles are simple or with a few small digits. Respiratory trees are present. The calcareous ring is without posterior projections. Possess muscles for retracting the oral introvert. All members have a rigid body encased in enlarged flattened ossicles. The body is usually “U” shaped. All members live burrowed in soft sediment. Most live in deep water.

Discussion of Phylogenetic Relationships

The evolutionary relationships of the major holothuroid lineages were, until quite recently, poorly understood. This was in part due to their lack of an integrated skeleton like that providing the extensive fossil record and numerous morphological characters of other groups of echinoderms. There have been numerous speculations about the relationships within Holothuroidea extending well back into the 19th century. The methods of modern comparative biology had not been applied to these problems until quite recently. Then Littlewood et al. (1997), in an effort to resolve class-level relationships within echinoderms, sequenced two ribosomal genes from a total of four orders. Their analyses consistently supported a close relationship between Dendrochirotida and Aspidochirotida, but they could not resolve the phylogenetic position of Elasipodida and Apodida (Figure 3: A, B). Smith (1997) subsequently argued that the Elasipodida are more closely related to (Dendrochirotida + Aspidochirotida) than the Apodida (Figure 3: C). This hypothesis recalls an early speculation (Semper 1868) whereby Apodida is sister to the remaining holothuroids.

Click on an image to view larger version & data in a new window

Click on an image to view larger version & data in a new window

Recent hypotheses about holothuroid relationshipsFigure 3. Recent hypotheses about holothuroid relationships.
A. Tree based on complete 18S rDNA sequences (Littlewood et al., 1997).
B. Tree based on partial 28S rDNA sequences (Littlewood et al., 1997).
C. Interpretation of the 18S and 28S rDNA data favored by Smith (1997).

More comprehensive cladistic analyses of morphological and DNA data (Kerr, 2000) agree with Smith’s hypothesis. Further, it appears that Dendrochirotida is paraphyletic due to the Dactylochirotida lineage arising from within the Dendrochirotida. This arrangement of the two orders is so far supported by few characters, and an alternate arrangement may ultimately prevail. Kerr (2000) also places Molpadiida as sister to Dendrochirotida plus Dactylochirotida. Together with Aspidochirotida, the aforementioned orders form a group united, most notably, by the presence of respiratory trees. The placement of two rare families currently referred to the Molpadiida, Eupyrgidae and Gephyrothuriidae, is uncertain; they may turn out to be only distantly related to one another and other ordinal level groups of holothurians. Based on the presence of respiratory trees, however, they are unlikely to be closely related to either the Apodida or Elasipodida, which lack such structures. The remaining features of the higher level relationships shown in the figure at the top of this page, though, appear solidly supported and unlikely to change with the consideration of new characters.

Fossil History

As for most soft-bodied animals, holothuroids have a poor fossil record. Published accounts exist of body fossils for about 19 species, though at least that many body-fossil species lay undescribed on museum shelves. Most ancient holothuroids are known from fossils of isolated ossicles. This complicates the taxonomy somewhat since ossicles can differ even within an individual depending on age, habitat and geography. How then does one identify a single species? As a result, most fossil holothuroids have been described as paraspecies based on unique ossicle types. Entire or isolated elements of the calcareous ring are also known, though less work has been done on these potentially informative structures. The rarity of holothuroid fossils in part may be due to a lack of collecting effort, since the microscopic ossicles require special collecting methods, and there are few specialists working on the group. In addition, isolated ring elements may sometimes be confused with the robust plates of other echinoderms.

Click on an image to view larger version & data in a new window

Click on an image to view larger version & data in a new window

Isolated pieces of the calcareous rings of fossil holothuriansFigure 4. Isolated pieces of the calcareous rings of fossil holothurians.
Left: Interradial pieces; Center: Radial pieces; both from apodid holothurians from the Upper Liassic of Germany, approx. 180 Ma;
Right: Pieces from fossil molpadiid holothurians from the Hauterivian of Germany, approx. 130 Ma.
Photographs copyright © 2000 Mike Reich.

Holothuroids probably evolved by at least the Lower Silurian, most likely from a little-known group of extinct Palaeozoic echinoderms called ophiocistioids. However, the oldest reported body fossil of a holothuroid is from the Lower Devonian, while the oldest undoubted ossicle is from the Upper Silurian. Plate ossicles are known from the Ordovician, but their identity as holothuroid is uncertain because they resemble the plates of other echinoderms. Still, plate ossicles ascribable to holothuroids are well known and, when combined with the phylogenetic evidence, suggest that several groups of ancient plated forms existed that are only distantly related to living plated dendrochirotes and dactylochirotes. Alternatively, these living forms have retained their ancient armour and Holothuroidea has had a long and repeated history of losing a plated morphology.

A comprehensive account of holothurian palaeontology is found in Gilliland (1993), while an up-to-date bibliography and other palaeontological information is available from Mike Reich’s Fossil Holothuroidea Page.

Other Names for Holothuroidea

  • holothuroids
  • Sea cucumbers

References

Gilliland, P. M. 1993. The skeletal morphology, systematics and evolutionary history of holothurians. Special Papers in Palaeontology 47: 1-147

Hyman, L. H. 1955. The Invertebrates. Vol. 4. Echinodermata. New York: McGraw Hill.

Kerr, A. 2000. Evolution and Systematics of Holothuroidea (Echinodermata). Thesis, Yale University.

Littlewood, D. T. J., A. B. Smith, K. A. Clough and R. H. Emson. 1997. The interrelationships of the echinoderm classes: morphological and molecular evidence. Biological Journal of the Linnean Society 61: 409-438.

Mooi, R. and B. David. 1997. Skeletal homologies of echinoderms. Paleontological Society Papers 3: 305-355.

Pawson, D. L. 1982. Holothuroidea. In: Parker, S. P., ed. Synopsis and Classification of Living Organisms. New York: McGraw-Hill, 813-818.

Semper, C. 1868. Reisen im Archipel der Philippinen. 2. Wissenschaftliche Resultate. 1. Holothurien. Leipzig: Wilhelm Engelmann.

Smiley, S., F. S. McEuen, S. Chaffee, and S. Krishnan. 1991. Echinodermata: Holothuroidea. In: Giese, A. C., J. S. Pearse, and V. B. Pearse, eds. Reproduction of Marine Invertebrates. Volume 6. Pacific Grove, California: Boxwood Press, 663-750.

Smiley, S. 1994. Holothuroidea. In: Harrison, F. W. and F.-S. Chia, eds. Microscopic Anatomy of Invertebrates. Volume 14. Echinodermata. New York: Wiley-Liss, 401-471.

Smith, A. B. 1997. Echinoderm larvae and phylogeny. Annual Review of Ecology and Systematics 28: 219-241.

Information on the Internet

Title Illustrations
Click on an image to view larger version & data in a new window

Click on an image to view larger version & data in a new window
Synaptula
Scientific Name Synaptula (Apodida)
Location coral reef on the Eastern Coast of Thailand
Specimen Condition Live Specimen
Copyright © 2000 Sumaitt Putchakarn
Holothuria (Halodeima) atra
Scientific Name Holothuria (Halodeima) atra (Aspidochirotida)
Location coral reef on the Eastern Coast of Thailand
Specimen Condition Live Specimen
Copyright © 2000 Sumaitt Putchakarn
Cucumaria
Scientific Name Cucumaria (Dendrochirotida)
Location Ross Sea, Antarctica
Specimen Condition Live Specimen
Copyright © 2000 Norbert Wu

Kultur Jaringan

Kultur jaringan adalah suatu metode untuk mengisolasi bagian dari tanaman seperti sekelompok sel atau jaringan yang ditumbuhkan dengan kondisi aseptik, sehingga bagian tanaman tersebut dapat memperbanyak diri tumbuh menjadi tanaman lengkap kembali.[1]

Prinsip

Teknik kultur jaringan memanfaatkan prinsip perbanyakan tumbuhan secara vegetatif.[1] Berbeda dari teknik perbanyakan tumbuhan secara konvensional, teknik kultur jaringan dilakukan dalam kondisi aseptik di dalam botol kultur dengan medium dan kondisi tertentu.[1] Karena itu teknik ini sering kali disebut kultur in vitro. Dikatakan in vitro (bahasa Latin), berarti “di dalam kaca” karena jaringan tersebut dibiakkan di dalam botol kultur dengan medium dan kondisi tertentu.[2] Teori dasar dari kultur in vitro ini adalah Totipotensi.[3] Teori ini mempercayai bahwa setiap bagian tanaman dapat berkembang biak karena seluruh bagian tanaman terdiri atas jaringan-jaringan hidup.[3] Oleh karena itu, semua organisme baru yang berhasil ditumbuhkan akan memiliki sifat yang sama persis dengan induknya.[3]

 Prasyarat

Pelaksanaan teknik ini memerlukan berbagai prasyarat untuk mendukung kehidupan jaringan yang dibiakkan.[2] Hal yang paling esensial adalah wadah dan media tumbuh yang steril.[4] Media adalah tempat bagi jaringan untuk tumbuh dan mengambil nutrisi yang mendukung kehidupan jaringan.[2] Media tumbuh menyediakan berbagai bahan yang diperlukan jaringan untuk hidup dan memperbanyak dirinya.[2]

 Media

Ada dua penggolongan media tumbuh: media padat dan media cair. [2] Media padat pada umumnya berupa padatan gel, seperti agar, dimana nutrisi dicampurkan pada agar.[2] Media cair adalah nutrisi yang dilarutkan di air.[2] Media cair dapat bersifat tenang atau dalam kondisi selalu bergerak, tergantung kebutuhan.[2] Komposisi media yang digunakan dalam kultur jaringan dapat berbeda komposisinya.[4] Perbedaan komposisi media dapat mengakibatkan perbedaan pertumbuhan dan perkembangan eksplan yang ditumbuhkan secara in vitro.[5] Media Murashige dan Skoog (MS) sering digunakan karena cukup memenuhi unsur hara makro, mikro dan vitamin untuk pertumbuhan tanaman. [6]

Nutrien yang tersedia di media berguna untuk metabolisme, dan vitamin pada media dibutuhkan oleh organisme dalam jumlah sedikit untuk regulasi.[7][8] Pada media MS, tidak terdapat zat pengatur tumbuh (ZPT) oleh karena itu ZPT ditambahkan pada media (eksogen).[7] ZPT atau hormon tumbuhan berpengaruh pada pertumbuhan dan perkembangan tanaman.[7] Interaksi dan keseimbangan antara ZPT yang diberikan dalam media (eksogen) dan yang diproduksi oleh sel secara endogen menentukan arah perkembangan suatu kultur.[7][8]

Penambahan hormon tumbuhan atau zat pengatur tumbuh pada jaringan parenkim dapat mengembalikan jaringan ini menjadi meristematik kembali dan berkembang menjadi jaringan adventif tempat pucuk, tunas, akar maupun daun pada lokasi yang tidak semestinya. [9] Proses ini dikenal dengan peristiwa dediferensiasi. Dediferensiasi ditandai dengan peningkatan aktivitas pembelahan, pembesaran sel, dan perkembangan jaringan.[9]

Metode

Metode perbanyakan tanaman secara in vitro dapat dilakukan melalui tiga cara, yaitu melalui perbanyakan tunas dari mata tunas apikal, melalui pembentukan tunas adventif, dan embriogenesis somatik, baik secara langsung maupun melalui tahap pembentukan kalus.[2] Ada beberapa tipe jaringan yang digunakan sebagai eksplan dalam pengerjaan kultur jaringan.[5] Pertama adalah jaringan muda yang belum mengalami diferensiasi dan masih aktif membelah (meristematik) sehingga memiliki kemampuan regenerasi yang tinggi.[5] Jaringan tipe pertama ini biasa ditemukan pada tunas apikal, tunas aksiler, bagian tepi daun, ujung akar, maupun kambium batang.[10] Tipe jaringan yang kedua adalah jaringan parenkima, yaitu jaringan penyusun tanaman muda yang sudah mengalami diferensiasi dan menjalankan fungsinya.[10] Contoh jaringan tersebut adalah jaringan daun yang sudah berfotosintesis dan jaringan batang atau akar yang berfungsi sebagai tempat cadangan makanan.[10]

Bunga sakura

Arti Bunga Sakura Bagi Masyarakat Jepang.

13 juni 2011

Labels:

Tidak ada peristiwa di akhir maret hingga awal april yang paling ditunggu oleh masyarakat Jepang selain mekarnya bunga sakura. Saat kuncup-kuncup pink dan putih bunga sakura muncul, itulah pertanda musim semi telah tiba, musim yang menjanjikan masa depan cerah dan penuh dengan harapan. Taman dan kebun yang sebelumnya dipenuhi salju, kini tampak menghangat seiring mencairnya salju.

Mekarnya bunga Sakura memang memiliki makna tersendiri yang mungkin tidak akan pernah bisa terungkapkan dengan untaian kata-kata. Sebuah makna kesejukan, keheningan, kebahagiaan dan ketenangan. Sakura juga bermakna perpisahan saat bunga sakura mulai jatuh berguguran di tiup angin.

Kecantikan bunga sakura juga memiliki arti spiritual dan filosofis tentang kehidupan manusia. Bagi orang Jepang, bunga itu menyimbolkan kegembiraan dan kesedihan serta mengingatkan manusia untuk selalu bersyukur dalam menghargai kehidupan dan kesedihan.

Sakura juga mengingatkan bahwa segalanya memiliki kebalikan. Ada sedih, ada gembira. Ada hidup, ada saatnya mati. Ada saatnya merekah dengan indahnya dan ada saatnya berguguran. Dan itulah yang bunga sakura lakukan, mekar dengan memberikan keindahan bagi jiwa-jiwa yang berkelana. Itulah mengapa di setiap mekarnya bunga sakura, keluarga jepang merayakannya dengan berkumpul bersama, menyusuri taman sembari melakukan renungan dan menikmati hidangan di bawah pohon sakura. Perayaan ini dinamakan “Hanami”.

Hanami dapat diartikan juga dengan melihat atau memandang bunga.Bunga sakura tidaklah lama berkembang terus, cepat sekali bungannya runtuh dan berganti daun yang baru bersemi lagi, di tahun yang akan datang bunga sakura baru bersemi lagi, makanya kalau ngak cepat-cepat melihat nanti sudah berubah jadi daun semua.Maklum cuma setahun satu kali bisa melihat bunga sakura, jadi kalau nggak melihatnya sangat menyesal sekali deh!. Perayaan Hananami ini merupakan sebuah perayaan turun-temurun di masyarakat Jepang. Tercatat semenjak sekitar tahun 794, para petinggi atau aristokrat mengadakan pesta menyambut mekarnya bunga sakura. Tradisi itu menjadi acara ritual keagamaan di Jepang. Biasa diadakan upacara doa sebelum musim tanam, dengan harapan para petani mendapat sukses besar pada musim panen raya nanti.Bunga sakura tidaklah lama berkembang terus, cepat sekali bungannya runtuh dan berganti daun yang baru bersemi lagi, di tahun yang akan datang bunga sakura baru bersemi lagi, makanya kalau ngak cepat-cepat melihat nanti sudah berubah jadi daun semua.

Di negara lain, tradisi hanami disebut sebagai cherry blossom festival yang dikonotasikan dengan sakura matsuri. Dalam festival itu, terdapat beragam acara dan hidangan bagi para peserta dan biasanya festival itu memiliki keterkaitan dengan budaya lokal, yakni dengan melibatkan warga setempat untuk berpartisipasi dalam acara yang ada.Bunga sakura banyak sekali jenisnya: Yaezakura, Oshimazakura, Shidarezakura, yang lebih terkenal bunganya Someiyoshino. Kira-kira ada 200 macam bentuk bunga sakura mungkin lebih dari itu.

Sungguh Indah Taman Bunga Sakura Di Tepi Sungai

Hello world!

Welcome to WordPress.com. After you read this, you should delete and write your own post, with a new title above. Or hit Add New on the left (of the admin dashboard) to start a fresh post.

Here are some suggestions for your first post.

  1. You can find new ideas for what to blog about by reading the Daily Post.
  2. Add PressThis to your browser. It creates a new blog post for you about any interesting  page you read on the web.
  3. Make some changes to this page, and then hit preview on the right. You can alway preview any post or edit you before you share it to the world.